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Abstract In low-light conditions, the single-photon light detection and ranging (Lidar) technique based on time-

correlated single-photon counting (TCSPC) is suited for collecting a three-dimensional (3D) profile of the target.  We 
present a rapid 3D reconstruction approach for single-photon Lidar with low signal-to-background ratio (SBR) and few 
photons based on a combination of short-duration range gate selection, photon accumulation of surrounding pixels, and 
photon efficiency algorithm in this paper.  We achieve the best noise filtering and 3D image reconstruction by choosing the 
optimal combined order of simple methods.  Experiments were carried out to validate the various depth estimation 
algorithms using simulated data and single-photon avalanche diode (SPAD) array data under varying SBR.  The 
experimental results demonstrate that our proposed method can achieve high-quality 3D reconstruction with a faster 
processing speed compared to the existing algorithms.  The proposed technology will encourage the use of single-photon 
Lidar to suit practical needs such as quick and noise-tolerant 3D imaging.
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1　Introduction
Light detection and ranging （Lidar） technology is 

widely utilized in disciplines such as robot vision［1］， self-
driving cars［2］， target tracking［3-4］， and remote sensing［5-6］ 
to acquire three-dimensional （3D） profiles of a scene.  
The single-photon Lidar system， which enables the 
detection of optical signals as weak as a single-photon 
level， is developing rapidly over the last two 
decades［7-13］.  The time of flight （TOF） or arrival time 
of each detected photon can be recorded by the single-

photon Lidar system using a combination of time-

correlated single photon counting （TCSPC） and a 
single photon detector， such as single-photon avalanche 
diode （SPAD）［14］.  This Lidar system is particularly 
suitable for the detection of optical signals in low-light 
environments， such as distant targets with low 
reflectivity［15-16］ or power-constrained system［17-18］.  
However， signal photons are easily drowned out by 
background noise， making it difficult to detect the time 
information provided by the signal photons and compute 

the distance to the target accurately.
Initially， the researchers employed a cumulative 

technique for noise suppression， accumulating hundreds 
to thousands of photons to create an accurate photon 
counting histogram， which requires a lengthy measuring 
time［19］.  The background noise due to its random 
characteristics has a uniform distribution during the 
detection period.  When compared to background noise， 
the signal photons reflected off the target have an 
aggregation effect and are more likely to collect into a 
peak in the histogram.  The depth of the target can be 
estimated using histogram information paired with cross-

correlation or maximum likelihood （ML） estimation［20-21］.  
When the accumulation time is not long enough to 
accumulate enough photons， this method becomes 
ineffective.  Emerging photon-efficient imaging systems 
have been demonstrated to obtain 3D images of targets 
using a few photons［21-27］.

First-photon imaging was proposed that can 
acquire a depth image when only the first arrival photon 
is detected at each pixel［21］.  The computational imaging 
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framework produced by this technology is based on the 
physical model of single-photon detection and the 
spatial correlation of natural scenes.  Later， based on 
the first-photon imaging， Shin et al.［22］ created an array-

type photon counting 3D imaging system in conjunction 
with a related computational imaging method， and 
accomplished 3D imaging with an average of ~ 1 
photon per pixel.  Halimi et al.［26］ introduced a hierarchical 
Bayesian model-based algorithm for the restoration of 
depth and reflectivity obtained in the limit of very low 
photon counts and imaging in an underwater 
environment.  However， the image accuracy obtained 
by the preceding approaches degrades when the ambient 
noise is severe， such as in situations with a very low 
signal-to-background ratio （SBR < 0. 1）.  As a result， 
a photon-efficient technique emphasizing pixel-wise 
unmixing of signal and noise photons was presented， 
the key idea of which is to adaptively remove noise 
detection using adaptive clustering and a super-pixel 
filling mechanism［28］.  Finally， the accurate depth 
imaging was realized at SBR as low as 0. 04.  
However， because of the pixel-by-pixel noise filter 
processing， their solution requires a significant amount 
of time.

In this paper， we present an optimal combination 
method for fast 3D image reconstruction with few 
photons and low SBR.  The first step is to select global 
gating using cumulative histogram information of signal 
and noise photons from all pixels in the SPAD array.  
The reflected signal photons are gathered and display a 
significant peak in the relevant time bin range when 
compared to the noise range.  We use a threshold 
method to determine the interval of short-duration range 
gates and apply noise filtering to each pixel.  In the 
second step， nearby pixel accumulation increases the 
number of photons within a single pixel， eliminating 
mistakes caused by signal photons loss within the pixel.  
And the depth of the target is estimated by ML 
algorithms.  Finally， we optimize the depth calculated 
images using median filtering and total variance （TV） 
regularization.  With a simulated extreme environment 
（SBR is 0. 01 and an average photon per pixel （PPP） is 
approximately 2） and a laboratory setting， our 
technique enables quick 3D reconstruction （SBR is 
0. 05 and PPP is 2. 35）.

2　Experiments and Methods
2. 1　Experimental system setup

The experimental system designed and built based 

on SPAD array detector （PF32， Photon Force， UK） 
is shown in Fig.  1.  A diffractive spot matrix from a 
diffractive optical element （DOE； MS-694-Q-Y-A， 
Holo/Or） matched to each pixel in the 32×32 size 
SPAD array is used in the system.  The spot matrix 
only illuminates the field-of-view area corresponding to 
the photosensitive areas of the individual SPAD array 
pixels， increasing the system’s efficiency in utilizing 
reflected laser energy.  The experimental scheme and 
the actual optical system are shown in Fig.  1（a） and 
Fig. 1（b）， respectively.  The system consists of the 
following components： a lens system （L2） to compress 
the DOE outgoing spot matrix divergence angle to 
match the detector field of view， a half waveplate 
（HWP） to control the polarization of the system 
outgoing laser， a polarization beam splitter （PBS） 
combined with a λ/4 waveplate （λ/4 WP） as a transmit-
receive switch， and an objective lens （OBJ） to focus 
photons onto the SPAD array.  We employ a pulsed 
laser （LDH-D-TA-530， PicoQuant， Germany） with a 
pulse frequency ƒ of 20 MHz， a duration T r of 50 ns， 
and a total final output power of 102 μW.  The SPAD 
array runs with a time resolution of 55 ps and all pixels 
operate in parallel mode with a frame period of 10 μs.  
In the experiment， the target distance is about 3 m.  
The specific data acquisition process and sub-pixel 
scanning method have been described in detail in Ref.
［29］.  Based on the panoramic sub-pixel scanning， we 
performed an additional 5-fold micro-scanning in the 

Fig.  1　 Experimental system.  (a) Experimental system model; 
(b) diagram of experimental system optical path

vertical scanning based on the panoramic sub-pixel 
scanning［29］.  The final resolution of the image is 160×
1039， where each small region of the scene corresponds 
to one pixel （i， j） of the depth image z∈ RNi × Nj

+  and the 
intensity image α∈ RNi × Nj

+ .
2. 2　3D image reconstruction methods

The photon detection model in a single-photon 
Lidar system with pulses s ( t ) illuminating a single pixel 
（i，j）［22］ can be described as

ri，j ( t )= αi，j s ( t- 2zi，j/c )+ bi，j， （1）
where αi，j denotes the reflectance corresponding to a 
pixel （i， j） and bi，j shows the flux of ambient light 
generated at different pixels of the SPAD array.  
Because the SPAD array detector is non-uniform， the 
quantum efficiency of each pixel can be denoted as 
ηi，j ∈ [ 0，1 ).  The detector also has a dark count， 
expressed as a rate di，j， which ultimately gives a total 
detection intensity of
λi，j ( t )= ηi，j r i，j ( t )+ di，j = ηi，j α i，j s ( t- 2zi，j/c )+

( ηi，jb i，j + di，j )， （2）
it represents the result of combining noise terms while 
ignoring the effect of dead time.

The detection rate of photons in each laser 
illumination cycle ［28］can be denoted as

Λ ( αi，j )=∫
0

T r

λi，j ( t ) = ηi，j α i，j S+ Bi，j， （3）

where S=∫
0

T r

s ( t ) dt and Bi，j = ( ηi，jb i，j + di，j )T r denote 

the total signal and the background count containing the 
dark count within each repetition period， respectively.  
While the system is running in low-light situations，
ηi，j α i，j S+ Bi，j ≪ 1， the likelihood of detecting a photon 

within a single cycle is low.  In the experiments， we 
used a generated dataset with the size of M× N， a 
single pixel illuminated by R pulses.  The total number 
of photons is ki，j， and the arrival time of each photon is 
Ti，j ={t ( 1 )

i，j，t ( 2 )
i，j，…，t ( ki，j )

i，j } at each pixel.
In the presence of low target reflectivity， long 

detection distance， large background noise， or poor 
illumination laser intensity， a few photons of a single-

photon Lidar system are very sensitive to interference 
by background noise， i. e. ， ηi，j αi，j S≪ Bi，j.  The 
histogram method based on photon counting can easily 
be drowned out by background noise without increasing 
the data acquisition time.  The depth of information of 
the target has become difficult to assess precisely.  
Furthermore， the low-light environment suffers from 
missing signal photons within some pixels.  Especially 
the face of signal photons and the low-light environment 
further reduce the SBR and increase the difficulty of the 
signal photons being separated.  Therefore， in the face 
of a lower signal-to-background ratio environment， we 
need to reduce the Bi，j while increasing the proportion of 
ηi，j αi，j S.

Fig.  2 depicts our data processing flow chart.  To 
increase the SBR of the obtained data， the first step is 
to separate signal photons from noise via global gating.  
According to the results of Eq.（3）， one strategy to 
improve the SBR is to reduce the noise from the 
ambient light flux by lowering the Bi，j.  Reducing the 
count Bi，j requires first locating the interval range 
corresponding to the target 2zi，j/c.  It is easy to 
determine the target location 2zi，j/c by the peak of the 
photon counting histogram when the number of photons 

Fig.  2　Data processing flow chart of the proposed method
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vertical scanning based on the panoramic sub-pixel 
scanning［29］.  The final resolution of the image is 160×
1039， where each small region of the scene corresponds 
to one pixel （i， j） of the depth image z∈ RNi × Nj

+  and the 
intensity image α∈ RNi × Nj

+ .
2. 2　3D image reconstruction methods

The photon detection model in a single-photon 
Lidar system with pulses s ( t ) illuminating a single pixel 
（i，j）［22］ can be described as

ri，j ( t )= αi，j s ( t- 2zi，j/c )+ bi，j， （1）
where αi，j denotes the reflectance corresponding to a 
pixel （i， j） and bi，j shows the flux of ambient light 
generated at different pixels of the SPAD array.  
Because the SPAD array detector is non-uniform， the 
quantum efficiency of each pixel can be denoted as 
ηi，j ∈ [ 0，1 ).  The detector also has a dark count， 
expressed as a rate di，j， which ultimately gives a total 
detection intensity of
λi，j ( t )= ηi，j r i，j ( t )+ di，j = ηi，j α i，j s ( t- 2zi，j/c )+

( ηi，jb i，j + di，j )， （2）
it represents the result of combining noise terms while 
ignoring the effect of dead time.

The detection rate of photons in each laser 
illumination cycle ［28］can be denoted as

Λ ( αi，j )=∫
0

T r

λi，j ( t ) = ηi，j α i，j S+ Bi，j， （3）

where S=∫
0

T r

s ( t ) dt and Bi，j = ( ηi，jb i，j + di，j )T r denote 

the total signal and the background count containing the 
dark count within each repetition period， respectively.  
While the system is running in low-light situations，
ηi，j α i，j S+ Bi，j ≪ 1， the likelihood of detecting a photon 

within a single cycle is low.  In the experiments， we 
used a generated dataset with the size of M× N， a 
single pixel illuminated by R pulses.  The total number 
of photons is ki，j， and the arrival time of each photon is 
Ti，j ={t ( 1 )

i，j，t ( 2 )
i，j，…，t ( ki，j )

i，j } at each pixel.
In the presence of low target reflectivity， long 

detection distance， large background noise， or poor 
illumination laser intensity， a few photons of a single-

photon Lidar system are very sensitive to interference 
by background noise， i. e. ， ηi，j αi，j S≪ Bi，j.  The 
histogram method based on photon counting can easily 
be drowned out by background noise without increasing 
the data acquisition time.  The depth of information of 
the target has become difficult to assess precisely.  
Furthermore， the low-light environment suffers from 
missing signal photons within some pixels.  Especially 
the face of signal photons and the low-light environment 
further reduce the SBR and increase the difficulty of the 
signal photons being separated.  Therefore， in the face 
of a lower signal-to-background ratio environment， we 
need to reduce the Bi，j while increasing the proportion of 
ηi，j αi，j S.

Fig.  2 depicts our data processing flow chart.  To 
increase the SBR of the obtained data， the first step is 
to separate signal photons from noise via global gating.  
According to the results of Eq.（3）， one strategy to 
improve the SBR is to reduce the noise from the 
ambient light flux by lowering the Bi，j.  Reducing the 
count Bi，j requires first locating the interval range 
corresponding to the target 2zi，j/c.  It is easy to 
determine the target location 2zi，j/c by the peak of the 
photon counting histogram when the number of photons 

Fig.  2　Data processing flow chart of the proposed method
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is high.  Under low SBR condition， the number of 
signal photons is substantially smaller than the 
background noise， making it difficult to precisely locate 
the target 2zi，j/c by the data within a single pixel， as 
shown in Fig.  3（a）.  Bi，j has a uniform distribution 
across the entire period T r interval， while ηi，j αi，j S is a 
clustered distribution around 2zi，j/c.  By accumulating， 
we establish the time bin corresponding to the short-
duration range gates ηi，j α i，j S and Bi，j for all pixels within 
the acquired M× N size， i. e. ， all pixels’ accumulation.  
The two signal photon accumulation peaks that eventually 
appear， as illustrated in Fig.  3（b）， are substantially 
more apparent than the background noise.  We use -E as 

the mean value of the background noise count we 
choose Bi，j.  To obtain adequate short-duration range 
gates and to eliminate background noise Bi，j， we keep a 
10% fluctuation value， i. e. ， the maximum value 
-
E ( 1 + 10% ) is set as the threshold -H.  The threshold 
-
H selecting the interval of the short-duration range gates 
T d where h （photon number） is greater than -H 
discriminates the histogram of collected photon counts 
for the complete area pixels.  The method reduces the 
range of the time bin for a fast reduction of the 
background count by using the information within the 
whole pixel to determine the short-duration range gate 
interval T d.

The second stage of our proposed solution 
addresses the few photons issue， which creates a larger 
depth estimate error that affects the correctness of the 
image’s 3D reconstruction.  We leverage the spatial 
connection between surrounding pixels to boost photon 
accumulation by accumulating signal photon numbers 
inside neighboring pixels.  We expand the pixel array 
with M× N size around to a pixel size with ( M+ 2 )× 
( N+ 2 ).  As a tuple， a tiny 3×3 matrix is employed， 
with the pixel （i， j） as the center， where all photons 
are aggregated and deposited （i， j）.  Then， we can 
obtain a photon accumulation cell.  When the neighboring 
pixels accumulate， we can have a greater number of 
photon signals and gain more accurate depth estimation 
in each pixel.

Based on the M× N compensation matrix， we do 
a 3D image estimation of the target.  The arrival time’s 
negative log-maximum likelihood （ML） function looks 
like this：

L ( zi，j |t Ui，j )= -∑
i，j

||Ui，j

log éë
ù
ûs ( )t Ui，j - 2zi，j c ， （4）

where Ui，j denotes the signal set which is determined by 

T d， we assume that all detections Ui，j are caused by the 
signal.  The above-mentioned regularized ML estimation 
and median filtering model can be translated into the 
following convex optimal solution problem［21］：

ẑ= arg min
zi，j

∑
i= 1

M ' ∑
j= 1

N '
L ( zi，j | { t Ui，j }l )+ βpen ( zi，j )，（5）

pen ( zi，j ) denotes the TV regularization term to be used for 
this constraint solution.  β is a weighting factor to adjust the 
degree of influence on the penalty term.  We use the 
SPIRAL-TAP solver to tackle this convex optimization 
problem， which is an efficient reconstruction approach 
based on the Poisson distribution ［30］.

Finally， we validate the proposed method by using 
simulated data of a Bowling scene［31］ and our experimental 
data in low SBR environments.  Furthermore， we 
compare depth estimation of the proposed method with 
that of the method in Ref. ［24］ and the method in 
Ref.［28］.

3　Experimental Result
3. 1　Simulation result

To verify our method， we use input images from 

Fig.  3　Histogram of photon counting statistics.  (a) Typical histogram of photon counting statistics for a specific single pixel; (b) photon 
counting statistics histogram after accumulation of all pixels within M× N

the Middle-bury dataset［31］ to form the synthetic data to 
simulate a low SBR environment.  We adjusted the 
system parameters for the simulated data concerning 
the actual experimental system because each pixel in 
the Middle-bury dataset utilized has only one realistic 
depth.  In this case， we choose a 626×555 pixels area 
Bowling scene as the target.  Photon counts are calculated 
using a Poisson random variable with an average PPP of 
2［28］.  To meet the low SBR requirement， the background 
counts are likewise generated using Poisson random 
variables.  We set the SBRs as 0. 1， 0. 08， 0. 06， 0. 04， 
0. 02， and 0. 01 to simulated data sets.

We compare the suggested method with the 
method in Ref. ［24］ and the method in Ref. ［28］.  
They are state-of-the-art photon-efficient methods for 
3D image reconstruction.  The root mean squared error 
（RMSE） for each reconstructed depth image is 
generated to assess the quality of the various approaches 
for estimating depth images：

ERMSE ( z，ẑ )= 1
NiNj

∑
i= 1

Ni

∑
j= 1

Nj

( z ref
i，j - ẑ i，j )2 ， （6）

where ẑ i，j is the ground-truth depth image.
The results of our depth estimation of the Bowling 

scene using simulated data are shown in Fig.  4.  

Fig.  4　 3D image reconstruction of the Bowling ball simulation scene at the average PPP of 2, SBR of 0. 08, 0. 04, 0. 02, and 0. 01 
respectively.  (a)‒ (l) 3D reconstruction images of the method in Ref. [24], the method in Ref. [28], and our proposed method 

under different SBR; (m) (n) Bowling ball picture and the real depth value
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the Middle-bury dataset［31］ to form the synthetic data to 
simulate a low SBR environment.  We adjusted the 
system parameters for the simulated data concerning 
the actual experimental system because each pixel in 
the Middle-bury dataset utilized has only one realistic 
depth.  In this case， we choose a 626×555 pixels area 
Bowling scene as the target.  Photon counts are calculated 
using a Poisson random variable with an average PPP of 
2［28］.  To meet the low SBR requirement， the background 
counts are likewise generated using Poisson random 
variables.  We set the SBRs as 0. 1， 0. 08， 0. 06， 0. 04， 
0. 02， and 0. 01 to simulated data sets.

We compare the suggested method with the 
method in Ref. ［24］ and the method in Ref. ［28］.  
They are state-of-the-art photon-efficient methods for 
3D image reconstruction.  The root mean squared error 
（RMSE） for each reconstructed depth image is 
generated to assess the quality of the various approaches 
for estimating depth images：

ERMSE ( z，ẑ )= 1
NiNj

∑
i= 1

Ni

∑
j= 1

Nj

( z ref
i，j - ẑ i，j )2 ， （6）

where ẑ i，j is the ground-truth depth image.
The results of our depth estimation of the Bowling 

scene using simulated data are shown in Fig.  4.  

Fig.  4　 3D image reconstruction of the Bowling ball simulation scene at the average PPP of 2, SBR of 0. 08, 0. 04, 0. 02, and 0. 01 
respectively.  (a)‒ (l) 3D reconstruction images of the method in Ref. [24], the method in Ref. [28], and our proposed method 

under different SBR; (m) (n) Bowling ball picture and the real depth value
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Although the method in Ref. ［24］ can achieve 3D 
image reconstruction under low photon count 
conditions， obtaining a reliable target depth estimation 
at lower SBRs is difficult.  For example， as illustrated 
in Fig.  4（a）‒（d）， the method in Ref.［24］ can collect 
3D images border information but does not estimate 
precise depth information.  The depth estimate approach 
in Ref. ［28］ is shown in Fig.  4（e）‒（h） for the 
simulated scene.  In the depth estimate results， we can 
acquire the depth information of each target.  Compared 
with the result of the method in Ref.［24］， the method 
in Ref. ［28］ is a significant improvement in image 
quality.  When SBR is 0. 01， the increased background 
noise count leads to the method in Ref.［28］ to have 
huge mistakes in depth estimation and the plate’s edge 
to disappear.  The depth estimation of the Bowling 
scene by our proposed method is shown in Fig.  4（i）‒
（l）.  The method provides a clear estimation of the 
Bowling ball boundary information， although there are 
some errors within pixels.  For instance， even when 
SBR is 0. 01， the suggested technique can get reliable 
depth estimations of the Bowling picture boundaries 
without introducing substantial error regions.

The RMSE and computational time （T） are 
calculated for each method， and the experimental 
results are shown in Fig.  5 and Table 1.  The RMSE 
value of our proposed approach and the unmixing 
algorithm is similar and smaller than the RMSE value 
of the method in Ref.［24］， as shown in Fig.  5（a）.  
The RMSE value of the reconstructed image obtained 
by the method in Ref.［28］ decreases quickly at the 
SBR of 0. 01.  In contrast， the RMSE in the image 
acquired by this approach grows as the signal-to-

background ratio is dropped more， i. e. ， SBR is 0. 01.  
Even so， the RMSE of the reconstructed image of the 
proposed method is 0. 036 m， which is smaller than that 
of the method in Ref.［24］ and the method in Ref.［28］.  
Most importantly， our proposed solution has the 
shortest overall average processing time of the three 
methods （64. 95 s）.  This is because， unlike the 
unmixing approach， which requires painstakingly 
calculating a short-duration range gate per pixel， our 
suggested method achieves noise filtering in the first 
step by obtaining a common short-duration range gate.  
The RMSE value of our proposed method and the 
unmixing algorithm is approximately equal as the SBR 
increases， and the difference in T of the algorithm 
decreases， as shown in Fig.  5（b）.

3. 2　Experiment result
A building model scene acquired with our single-

photon Lidar system is used for the evaluation using 
real experimental data.  The picture of the target and the 
depth imaging results are shown in Fig.  6.  In a 
laboratory setting， we collected experimental data for 
the building model using a sub-pixel panoramic scanning 
approach with an image size of 160×1036 and an SBR 
of 0. 05.  A few photons were collected by randomly 
extracting the same number of frames within a single 
detector pixel with an average PPP of 2. 35.  Fig.  6（b） 

Fig.  5　 Performance evaluation of depth estimation and 
computation time on the Bowling simulation dataset 
under different algorithms, the average PPP is 2.  
(a) RMSE of depth estimation; (b) computation time 

comparison

Table 1　Algorithm performance comparison

SBR

0. 1
0. 08
0. 06
0. 04
0. 02
0. 01

Method in 
Ref.［24］

RMSE /
m

0. 351
0. 309
0. 266
0. 226
0. 218
0. 249

T /s

56. 58
65. 23
81. 28

114. 51
211. 57
414. 68

Method in 
Ref.［28］

RMSE /
m

0. 040
0. 063
0. 063
0. 060
0. 084
0. 272

T /s

421. 40
456. 30
592. 73
836. 84
2757. 4
11523

Proposed 
method

RMSE /
m

0. 030
0. 031
0. 030
0. 031
0. 033
0. 036

T /s

57. 34
56. 66
56. 29
56. 77
59. 27
64. 95

and Fig.  6（c） show the 3D image reconstruction of the 
street scene model by the method in Ref. ［24］ and 
method in Ref. ［28］.  The approach in Ref. ［24］ 
recognized building targets but produced high errors in 
picture depth estimation， with an RMSE is 0. 200 m.  
The approach in Ref.［28］ is more accurate for building 
model identification， with an RMSE is 0. 045 m， as 
illustrated in Fig.  6（c）.  Fig.  6（d） shows the result of 
our proposed method for the 3D reconstruction of the 
building model with an RMSE of 0. 019 m and T of 
19. 77 s.  The chance of an empty pixel in the recorded 
data set is minimal due to the high reflectivity of the 
building target surface.  Furthermore， the neighborhood 
pixel accumulation in our method uses the same size 
cells as the method in Ref.［28］， and the number of 
photons within a single pixel after accumulation is 
greater.  In terms of imaging accuracy and algorithm 
running time， our suggested method outperforms the 
method in Ref. ［28］ and greatly outperforms the 
method in Ref. ［24］.  Where Fig.  6（e） shows the 

ground truth with accurate depth estimation obtained for 
a larger number of photons.  The computer used in the 
experiment has an i7-6700 CPU with the main 
frequency of 3. 4 GHz.  By combining simulated 
Bowling ball data and laboratory-acquired building 
model data， our suggested method outperforms 
previous methods in terms of lower SBR， and a faster 
processing speed.

4　Conclusions
In summary， we propose a fast 3D reconstruction 

method for single photon Lidar with low SBR and few 
photons that preprocess the raw data by combining full 
pixel accumulation to generate a short-duration range 
gate and neighboring pixel accumulation to obtain 
effective depth estimation and then uses regularized ML 
estimation to obtain depth images.  Our method 
increases the processing speed while ensuring the 
accuracy of the reconstructed depth image at low SBR.  
High-quality depth images are obtained by the proposed 
method in both the simulated （SBR is 0. 01， PPP is 2） 
and real laboratory conditions （SBR is 0. 05， PPP is 
2. 35）.  Our proposed strategy improves the imaging 
speed of 3D images in situations with low SBR and few 
photons.
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processing speed.
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In summary， we propose a fast 3D reconstruction 

method for single photon Lidar with low SBR and few 
photons that preprocess the raw data by combining full 
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increases the processing speed while ensuring the 
accuracy of the reconstructed depth image at low SBR.  
High-quality depth images are obtained by the proposed 
method in both the simulated （SBR is 0. 01， PPP is 2） 
and real laboratory conditions （SBR is 0. 05， PPP is 
2. 35）.  Our proposed strategy improves the imaging 
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